Home
Class 11
MATHS
If z = 2+sqrt(3) \ i, then z \ bar(z) = ...

If `z = 2+sqrt(3) \ i`, then `z \ bar(z)` = (a) `(2-sqrt(3) \ i)` (b) 7 (c) 8 (d) 13

Promotional Banner

Similar Questions

Explore conceptually related problems

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

If z=2-i sqrt(3) then z^(4)-4z^(2)+8z+35 is (A) 6(B)0(C)1 (D) 2

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

If z = (3sqrt7 +4i)^2(3sqrt7-4i)^3 then Re(z) =

If z+sqrt(2)|z+1|+i=0 , then z= (A) 2+i (B) 2-i (C) -2-i (D) -2+i

If z+sqrt(2)|z+1|+i=0 , then z= (A) 2+i (B) 2-i (C) -2-i (D) -2+i

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z = (sqrt(2) - sqrt(-3)) , find Re(z), Im(z), bar(z) and |z| .

If |z_(1)| = |z_(2)| = |z_(3)| = 1 and z_(1) + z_(2) + z_(3) = sqrt(2) + i , then the number z_(1)bar(z)_(2)+z_(2)bar(z)_(3) + z_(3)bar(z)_(1) is :