Home
Class 12
MATHS
Product of the all possible real value(s...

Product of the all possible real value(s) of `x` satisfying the equation `x + log_2 (2^x + 3) = log_2 (3*2^x - 2)+2` is (1) 8 (2) 3 (3) 1 (4) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The value(s) of x satisfying the equation log_(2)x+2log_(2)x-log_(2)(x-1)=3, is

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Number of value(s) of x satisfying the equation log_2 (log_3 (x^2)) =1 is/are (A) 0 (B) 1 (c) 2 (D) 3

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .