Home
Class 12
MATHS
If f(x)=[[cos(2x),cos(2x),sin(2x)],[-cos...

If `f(x)=[[cos(2x),cos(2x),sin(2x)],[-cosx,cosx,-sinx],[sinx,sinx,cosx]]`, then:` `f^(prime)(x)=0` at exactly three point in `(-pi,pi)` `f^(prime)(x)=0` at more than three point in `(-pi,pi)` `f(x)` attains its maximum at `x=0` `f(x)` attains its minimum at `x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

Let f(x)=|[cosx, sinx, cosx],[cos2x,sin2x,2cos2x],[cos3x,sin3x,3cos3x]|. Find f'(pi/2)

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx,-cosx,0)| then int_(0)^(pi//2){Delta(x)+Delta'(x)]dx equals

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Show that F(x)F(y)=F(x+y)