Home
Class 12
MATHS
{f cos^(-1)x+cos^(-1)y=theta," prove tha...

{f cos^(-1)x+cos^(-1)y=theta," prove that "x^(2)-2xy cos theta+y^(2)=sin^(2)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta

If cos ^(-1) x+ cos ^(-1) y= theta , show that x^(2)-2xycos theta +y^(2)=sin ^(2) theta

If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos theta+4y^(2)=36sin^(2) theta

If cos^(-1)((x)/(2))+cos^(-1)((y)/(3))=theta, prove that 9x^(2)-12xy cos theta+4y^(2)=36sin^(2)theta

If cos^(-1)x+cos^(-1)y= theta , show that x^2-2xycos theta+y^2 = sin^2 theta .

If cos^-1 x+cos^-1 y=theta , prove that x^2+y^2-2xycostheta=sin^2theta

If "cos"^(-1)(x/y) +"cos"^-1(y/3)= theta, "prove that" 9x^2- 12xy "cos" theta +4y^2 =36 "sin"^2 theta .

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If cos ^(-1) ""(x)/(2) + cos ^(-1) "" (y)/(3) = theta, then prove that 9x ^(2) - 12 xy cos theta + 4y ^(2) = 36 sin ^(2) theta