Home
Class 12
MATHS
Let a , b ,xa n dy be real numbers such...

Let `a , b ,xa n dy` be real numbers such that `a-b=1a n dy!=0.` If the complex number `z=x+i y` satisfies `I m((a z+b)/(z+1))=y` , then which of the following is (are) possible value9s) of x? (a)`-1-sqrt(1-y^2)` (b) `1+sqrt(1+y^2)` (c)`-1+sqrt(1-y^2)` (d) `-1-sqrt(1+y^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre(-1,0) and radius1 (c)y-axis (d) none of these

The complex number z which satisfy the equations |z|=1 and |(z-sqrt(2)(1+i))/(z)|=1 is: (where i=sqrt(-1) )

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

The Integrating Factor of the differential equation (1-y^2)(dx)/(dy)+y x=a y(-1