Home
Class 12
MATHS
int{1+tanx*tan(x+A)}dx=cotA*ln|f(x)|+C ...

`int{1+tanx*tan(x+A)}dx=cotA*ln|f(x)|+C` then f(x) equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

int sin x log(sec x+tan x)dx=f(x)+x+c , then (f(x) =

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

int sinx .log(Secx + tanx ) dx = f(x) + x + c then f(x) =

If int cos x log (tan""(x)/(2))dx = sin x log (tan""(x)/(2)) + f(x) then f(x) is equal to, (assuming c is a arbitrary real constant)

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

If intcos x log (tan""(x)/(2))dx=sin x log (tan""(x)/(2))+f(x) then f(x) is equal to, (assuming c is an arbitrary real constant)

int (√(tanx))/ (sin x cos x) dx = -f(x) =c, then f(x) =