Home
Class 12
MATHS
Let f: Rrarr(0,1) be a continuous functi...

Let `f: Rrarr(0,1)` be a continuous function. Then, which of the following function (s) has (have) the value zero at some point in the interval (0,1)? `e^x-int_0^xf(t)sintdt` (b) `f(x)+int_0^(pi/2)f(t)sintdt`(c) `x-int_0^(pi/2-x)f(t)costdt` (d) `x^9-f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

Let f:[-pi/2,pi/2] to R be a continuous function such that f(0)=1 and int_0^(pi/3)f(t)dt=0 Then which of the following statement is(are) TRUE?

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

Let f(x) be a differentiable function in the interval (0,2) , then the value of int_0^2 f(x) dx is :