Home
Class 11
PHYSICS
What is the property of two vectores ...

What is the property of two vectores `vec A and vec B` if:
(A) `|vecA + vecB|= |vecA - vecB|` (b) `vecA + vecB = vecA - vecB`

Text Solution

Verified by Experts

(a) We know that
`" "|vecA +vecB|=sqrt([A^(2) + B^(2) + 2AB cos theta])`
`and " "|vecA -vecB|= sqrt([A^(2) + B^(2) - 2AB cos theta])`
According to gives problem
`sqrt([A^(2) + B^(2) + 2AB cos theta ])= sqrt([A^(2) + B^(2) - 2AB cos theta ])`
Which on solution gives `costheta= 0`, i.e. `theta= pi//2`
i.e., the vectors `vecA` and `vecB` are perppendicular to each other .
(b) Given that `vecA + vecB = vecA -vecB`
`i. e., " "2vecB = 0 or vecB=0`
`i. e., vecB "is a null vector"`.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    GRB PUBLICATION|Exercise PROBLEMS FOR PARCTICE|23 Videos
  • VECTORS

    GRB PUBLICATION|Exercise OBJECTIVE QUESTIONS|120 Videos
  • UNITS AND DIMENSIONS

    GRB PUBLICATION|Exercise Link Compression|6 Videos

Similar Questions

Explore conceptually related problems

If vec A . vecB = vecA*vecB , find |vecA - vecB|

What are the properties of two vectors vecA and vecB such that: (a) vecA + vecB = C and A + B =C (b) vecA + vecB =vecC and A^(2) + B^(2) = C^(2)

For vectors vecA and vecB , (vecA + vecB). (vecA xx vecB) will be :

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

The vector vecA and vecB are such that |vecA+vecB|=|vecA-vecB| . The angle between vectors vecA and vecB is -

If vectors vecA and vecB are such that |vecA+vecB|= |vecA|= |vecB| then |vecA-vecB| may be equated to

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|

If vecA + vecB + vecC = vec0 , then vecA.(vecB xx vecC) = ……….

For any two vectors veca and vecb prove that |veca+vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|le|veca|+|vecb|