Home
Class 12
MATHS
Column 1,2 and 3 contains conics, equati...

Column 1,2 and 3 contains conics, equations of tangents to the conics and points of contact, respectively. Column I, Column 2, Column 3 I, `x^2+y^2=a` , (i), `m y=m^2x+a` , (P), `(a/(m^2),(2a)/m)` II, `x^2+a^2y^2=a` , (ii), `y=m x+asqrt(m^2+1)` , (Q), `((-m a)/(sqrt(m^2+1)), a/(sqrt(m^2+1)))` III, `y^2=4a x` , (iii), `y=m x+sqrt(a^2m^2-1)` , (R), `((-a^2m)/(sqrt(a^2m^2+1)),1/(sqrt(a^2m^2+1)))` IV, `x^2-a^2y^2=a^2` , (iv), `y=m x+sqrt(a^2m^2+1)` , (S), `((-a^2m)/(sqrt(a^2m^2+1)),(-1)/(sqrt(a^2m^2+1)))` The tangent to a suitable conic (Column 1) at `(sqrt(3),1/2)` is found to be `sqrt(3)x+2y=4,` then which of the following options is the only CORRECT combination? (IV) (iii) (S) (b) (II) (iii) (R) (II) (iv) (R) (d) (IV) (iv) (S)

Promotional Banner

Similar Questions

Explore conceptually related problems

Column 1,2 and 3 contains conics, equations of tangents to the conics and points of contact, respectively. Column I, Column 2, Column 3 I, x^2+y^2=a , (i), m y=m^2x+a , (P), (a/(m^2),(2a)/m) II, x^2+a^2y^2=a , (ii), y=m x+asqrt(m^2+1) , (Q), ((-m a)/(sqrt(m^2+1)), a/(sqrt(m^2+1))) III, y^2=4a x , (iii), y=m x+sqrt(a^2m^2-1) , (R), ((-a^2m)/(sqrt(a^2m^2+1)),1/(sqrt(a^2m^2+1))) IV, x^2-a^2y^2=a^2 , (iv), y=m x+sqrt(a^2m^2+1) , (S), ((-a^2m)/(sqrt(a^2m^2+1)),(-1)/(sqrt(a^2m^2+1))) If a tangent to a suitable conic (Column 1) is found to be y=x+8 and its point of contact is (8,16), then which of the followingoptions is the only CORRECT combination? (III) (ii) (Q) (b) (II) (iv) (R) (I) (ii) (Q) (d) (III) (i) (P)

Column 1,2 and 3 contains conics, equations of tangents to the conics and points of contact, respectively. Column I, Column 2, Column 3 I, x^2+y^2=a , (i), m y=m^2x+a , (P), (a/(m^2),(2a)/m) II, x^2+a^2y^2=a , (ii), y=m x+asqrt(m^2+1) , (Q), ((-m a)/(sqrt(m^2+1)), a/(sqrt(m^2+1))) III, y^2=4a x , (iii), y=m x+sqrt(a^2m^2-1) , (R), ((-a^2m)/(sqrt(a^2m^2+1)),1/(sqrt(a^2m^2+1))) IV, x^2-a^2y^2=a^2 , (iv), y=m x+sqrt(a^2m^2+1) , (S), ((-a^2m)/(sqrt(a^2m^2+1)),(-1)/(sqrt(a^2m^2+1))) For a=sqrt(2),if a tangent is drawn to a suitable conic (Column 1) at the point of contact (-1,1), then which of the following options is the only CORRECT combination for obtaining its equation? (I) (ii) (Q) (b) (III) (i) (P) (II) (ii) (Q) (d) ("I")("i")("P")

If m(x-2)+sqrt(1-m^(2))y=3, is tangent to a circle for all m in[-1,1] then the radius of the circle is

find the value of m,(sqrt(m+1)+sqrt(m-1))/(sqrt(m+1)-sqrt(m-1))=2m-(1)/(2)

If y=(x+sqrt(x^(2)-1))^(m) , show that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=m^(2)y

If the tangent to the curve x^(3)-y^(2) = 0 at (m^(2), -m^(2)) is parallel to y= -(1)/(m) x-2m^(3) , then the value of m^(3) is

Find the point of intersection of the following pairs of lines: y=m_(1)x+(a)/(m_(1)) and y=m_(2)x+(a)/(m_(2))

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

Prove that the equation of any tangent to the circle x^(2)+y^(2)-2x+4y-4=0 is of the form y=m(x-1)+3sqrt(1+m^(2))-2