Home
Class 12
MATHS
If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)...

If `g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n :` (a)`g^(prime)(pi/2)=-2pi` (b) `g^(prime)(-pi/2)=-2pi` (c)`g^(prime)(-pi/2)=2pi` (d) `g^(prime)(pi/2)=2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If I=int_(-pi)^pi e^(sinx)/(e^(sinx)+e^(-sinx))dx , then I equals (A) pi/2 (B) 2pi (C) pi (D) pi/4

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a)f(x)+f(pi) (b) f(x)+2(pi) (c)f(x)+f(pi/2) (d) f(x)+2f(pi/2)

Function g(x)=int_(-3)^(x)sin t((1)/(2)-cos t)dt where 0

If g(x)=int_(0)^(x)cos4tdt then equals: (1)(g(x))/(g(pi))(2)g(x)+g(pi)(3)g(x)-g(pi)(4)g(x)*g(pi)

int_(0)^(2 pi)[sin t]dt

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

If f(x)=e^(x)+int_(0)^(sin x)(e^(t)dt)/(cos^(2)x+2t sin x-t^(2))AA x in(-(pi)/(2),(pi)/(2)),then

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=