Home
Class 12
MATHS
If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2),...

If `x=(1-t^2)/(1+t^2)` and `y=(2t)/(1+t^2)`, prove that `dy/dx+x/y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x = (1-t^(2))/(1+t^(2)) and y = (2t)/(1+t^(2)) then dy/dx =

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x = (1 - t^2)/(1 + t^2) and y = (2t)/(1+t^2) , then show that (dy/dx) + x/y =0

If x=a(t+(1)/(t)) and y=a(t-(1)/(t)), prove that (dy)/(dx)=(x)/(y)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to