Home
Class 9
MATHS
" (ii) "4^(2x)=(root(3)(16))^(-6/y)=(sqr...

" (ii) "4^(2x)=(root(3)(16))^(-6/y)=(sqrt(8))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqrt(8))^(2)

Find the values of m and n if: 4^(2m)=(3sqrt(16))^(-(6)/(n))=(sqrt(8))^(2)

Solve the following equations: (i) 3^(x+1)=27 xx 3^4 (ii)4^(2x)=(16 3)^(-6/y)=(sqrt(8))^2 (iii) 3^(x-1) xx 5^(2y-3)=225 (iv) 8^(x+1)=16^(x+2) and, (v) (1/2)^(3+x)=(1/4)^(3y) 4^(x-1) xx (0. 5)^(3-2x)=(1/8)^x sqrt(a/b)=(b/a)^(1-2x ) , where a , b are distinct positive primes.

Prove that the following equations has no solutions. (i) sqrt((2x+7))+sqrt((x+4))=0 (ii) sqrt((x-4))=-5 (iii) sqrt((6-x))-sqrt((x-8))=2 (iv) sqrt(-2-x)=root(5)((x-7)) (v) sqrt(x)+sqrt((x+16))=3 (vi) 7sqrt(x)+8sqrt(-x)+15/(x^(3))=98 (vii) sqrt((x-3))-sqrt(x+9)=sqrt((x-1))

root(5)(x^(8).sqrt(x^(6).sqrt(x^(-4))

The distance between the directrices of the ellipse (4x-8)^(2)+16y^(2)=(x+sqrt(3y)+10)^(2) is k,then (k)/(2) is

The distance between directrix of the ellipse (4x-8)^(2)+16y^(2)=(x+sqrt(3)y+10)^(2) is

The distance between directrix of the ellipse (4x-8)^(2)+16y^(2)=(x+sqrt(3)y+10)^(2) is

The distance between directrix of the ellipse (4x-8)^(2)+16y^(2)=(x+sqrt(3)y+10)^(2) is