Home
Class 11
MATHS
If y=1+x+(x^2)/(2!)+(x^3)/(3!)+....∞ so ...

If `y=1+x+(x^2)/(2!)+(x^3)/(3!)+....∞` so prove that ` dy/dx=y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = 1 + x/(1!)+x^(2)/(2!)+x^(3)/(3!)+...., show that dy/dx = y .

If y = x^(x ^(x^(x ^(x.... oo) then prove that x dy/dx = y^2/(1- y logx )

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, show that (dy)/(dx)=y

If y = x- (x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+* * * prove that (1 + x) (dy)/(dx) = 1

If y=x+(1)/(x+(1)/(x+(1)/(x+...oo)))," prove that "(dy)/(dx)=(y)/((2y-x)).

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

If y= (x)/( x+a) , prove that x (dy)/( dx) = y(1-y) .

If y=x+(1)/(x+(1)/(x+(1)/(x+1))), prove that (dy)/(dx)=(y)/(2y-x)

If y=x+(1)/(x+(1)/(x+(1)/(x+))), prove that (dy)/(dx)=(y)/(2y-x)