Home
Class 9
MATHS
[" For ary hositive real number "x" ,wri...

[" For ary hositive real number "x" ,writh "],[" the value of "],[{(x^(a))^(b)}^((1)/(ab))*{(x^(b))^(t)}(1)/(bc)*{(x^(c))^(a)}^((1)/(ca))]

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive real number x;write the value of {(x^(a))^(b)}^((1)/(ab)){(x^(b))^(c)}^((1)/(bc)){(x^(c))^(a)}^((1)/(ca))

For any positive real number x;write the value of {(x^a)^b}^(1/(ab)) {(x^b)^c}^(1/(bc)) {(x^c)^a}^(1/(ca))

The value of ((x^(a))/(x^(b)))^((1)/(ab)) xx ((x^(b))/(x^(c)))^((1)/(bc)) xx ((x^(c))/(x^(a)))^((1)/(ca)) is equal to

Assuming that x is a positive real number and a,b,c are rational numbers,show that: ((x^(a))/(x^(b)))^((1)/(ab))((x^(b))/(x^(c)))^((1)/(bc))((x^(c))/(x^(a)))^((1)/(ac))=1

(x^(b)/x^(c ))^(1/(bc))xx(x^(c )/x^(a))^(1/(ca))xx(x^(a)/x^(b))^(1/(ab))

Show that (x^(b-c))^((1)/(bc))xx(x^(c-a))^((1)/(ca))xx(x^(a-b))^((1)/(ab))=1 .

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(1/(a b))\ ((x^b)/(x^c))^(1/(b c))\ \ ((x^c)/(x^a))^(1/(a c))=1

Assuming that x is a positive real number and a,b,c are rational numbers,show that: ((x^(a))/(x^(b)))^(a)-2+ab+b^(2)((x^(b))/(x^(c)))^(b)-2+bc+c^(2)((x^(c))/(x^(a)))^(c)-2+ca+a^(2)=1