Home
Class 12
MATHS
tan^(-1)a+tan^(-1)b=(pi)/(2)...

`tan^(-1)a+tan^(-1)b=(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (a,b) satisfy following equation tan^(-1)a+tan^(-1)b=(pi)/(4),tan^(-1)((1)/(a))+tan^(-1)b=tan^(-1)(7) then

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=