Home
Class 11
MATHS
lim(x->0)[e^sinx-1]/x...

`lim_(x->0)[e^sinx-1]/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)|sinx|/x

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/sinx

If a=lim_(x->oo) sinx/x & b=lim_(x->0) sinx/x Then int (ab log(1+x)+x^2)dx is equal to

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate : lim_( x -> 0 ) ( e^x - 1 )/ sinx

Evaluate : lim_(xrarr0 )(e ^(sinx)-1)/(x)