Home
Class 11
MATHS
If 1, omega omega^(2) are the cube roots...

If 1, `omega omega^(2)` are the cube roots of unity show that `(1 + omega^(2))^(3) - (1 + omega)^(3) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^2 be the cube roots of unity, then the value of (1 - omega + omega^2)^(5) + (1 + omega - omega^2)^5 is :

If 1, omega, omega^(2) are the cube roots of unity, then the value of (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8)) is

If 1, omega, omega^2 be three roots of 1, show that: (1+omega)^3-(1+omega^2)^3=0

If 1,omega,omega^(2) are the roots of unity then (1-omega+omega^(2))^(3)+(1+omega-omega^(2))^3=

If 1,omega,omega^(2) are cube roots of unity then 1,omega,omega^(2) are in