Home
Class 11
MATHS
Given that log2(3)=a,log3(5)=b,log7(2)=c...

Given that `log_2(3)=a,log_3(5)=b,log_7(2)=c`, express the logrithm of the number 63 to the base 140 in terms of a,b & c.

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that log_2(3)=a,log_3(5)=b,log_7(2)=c , express the logorithm of the number 63 to the base 140 in terms of a,b & c.

Given that log_2 3 = a, log_3 5=b,log_7 2=c ,then the value of log_(140) 63 is equal to

Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to

If log_(2)3=a,log_(3)5=b,log_(7)2=c find log_(140)63 in terms of a,b,c.

Given that log2,=a and log3=b ; write log sqrt(96) in terms of a and b

If log_(10)^(7)=b,log_(10)^(2)=a then express log_(5)^(9.8) in terms of a and b

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :