Home
Class 11
MATHS
Prove that a^x-b^y=0 where x=sqrt(loga(b...

Prove that `a^x-b^y=0` where `x=sqrt(log_a(b)) & y=sqrt(log_b(a)), a>0, b>0 & a,b !=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that a^(x)-b^(y)=0 where x=sqrt(log_(a)b) and y=sqrt(log_(b)a),a>0,b>0 and a,b!=1

Prove that a^x-b^y=0 w h e r e x=" "sqrt(("log")_a b) & y=sqrt((log)_b a ), a >0, b >0 & a , b!=1

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

Prove that asqrt(log_a b)-bsqrt(log_b a)=0

Prove that asqrt(log_a b)-bsqrt(log_b a)=0

Prove that asqrt(log_a b)-bsqrt(log_b a)=0

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0