Home
Class 12
MATHS
The range of f(x)=(x^4)/(1+x^8) is (1) ...

The range of `f(x)=(x^4)/(1+x^8)` is (1) `[0,oo)` (2) `[0,1/2]` (3) `[0, 1]` (4) `(-oo,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

If f_1(x)=2^(f_2(x)) , where f_2(x)=2012^(f_2(x)) ,where f_3(x)=(1/20213)^(f_4(x)) ,where f_4(x)=log_2013 log_x 2012,= then the range of f_1(x) is (A) (2,oo) (B) (2012,oo) (C) (0,oo) (D) (-oo,oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (-oo,1) and (2, 3). If f(1)= -8, then the range of f(x) is (a) [3,oo) (b) [-8,oo) (c) [-7,oo) (d) (-oo,6]

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}

If [x +[2x]] < 3, where[.] denotes the greatest integer function, then x is: 1.) [0,1) 2.) (-oo,3/2] 3.) (1,oo) 4.) (-oo,1)