Home
Class 12
MATHS
([(i),a,b],[-b,a]][[a,-b],[b,a]]...

([(i),a,b],[-b,a]][[a,-b],[b,a]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute the following: i) [[a, b],[ -b, a]]+[[a, b],[ b , a]] . ii) [[a^2+b^2 , b^2+c^2], [a^2+c^2 , a^2+b^2]]+[[2 a b , 2 b c],[ -2 a c, -2 a b]] iii) [[-1 , 4 ,-6] ,[ 8, 5 , 16],[ 2 , 8 , 5]]+[[12, 7 ,6 ],[ 8, 0, 5],[ 3, 2, 4]] iv) [[cos ^2 x ,. sin ^2 x],[ sin ^2 x , cos ^2 x]]+[[sin ^2 x, cos ^2 x ],[ cos ^2 x ,sin ^2 x]] .

If A=[[i,2i],[-3,2]] and B=[[2i,i],[2,-3]] ,where sqrt-1=(i) find A+B and A-B .Show that A+B is a singular.A-B a singular? Justify your answer.

If A=[[i,-i],[-i, i ]] and B=[[1,-1],[-1,1]] ,then A^( 8 ) equals,(where i=sqrt(-1) ) 4B 128 B -128 B -64 B

If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a. 4B b. 128 B c. -128 B d. -64 B

If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a. 4B b. 128 B c. -128 B d. -64 B

If A=([i,-i],[-i,i]) , B=([1,-1],[-1,1]) , A^(8)=KB and K=a^(b) then a+b=

If A=[[-1,2,3],[5,7,9],[-2,1,1]] and B=[[-4,1,-5],[1,2,0],[1,3,1]] , then verify that (i) (A+B)'=A'+B' (ii) (A-B)'=A'-B'

If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1) is equal to a. [[a+i b,-c+i d],[c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If A=[[a+i b, c+i d],[-c+i d, a-i b]]a n da^2+b^2+c^2+d^2=1,t h e nA^(-1) is equal to a.[[a+i b,-c+i d],[-c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1) is equal to a. [[a+i b,-c+i d],[c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these