Home
Class 12
MATHS
Show that (i) sin^(-1)(2xsqrt(1-x^2))=2s...

Show that (i) `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2))` (ii) `sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

Show that "sin"^(-1)(2xsqrt(1-x^(2)))=2"cos"^(-1)x,1/(sqrt(2))lexle1 .

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1