Home
Class 12
MATHS
If n in N, then int-n^n (-1)^([x]) dx eq...

If `n in N,` then `int_-n^n (-1)^([x]) dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If n in N , then int_(0)^(n) (x-[x])dx is equal to

If n in N , then int_(0)^(n) (x[x])dx is equal to

STATEMENT-1 : If n in N int_(-n)^(n)(-1)^([x])dx=2n and STATEMENT-2 : (-1)^([x]) is odd if x is odd integer

STATEMENT-1 : If n in N int_(-n)^(n)(-1)^([x])dx=2n and STATEMENT-2 : (-1)^([x]) is odd if x is odd integer

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to

int x^(n)dx is equal to -

What is int_(0)^(1) x(1-x)^(n)dx equal to ?

int ( n sin^(n-1))/(secx (sin x)^(n)) dx equals :