Home
Class 12
MATHS
If f(1/x)+x^2f(x)=0, x >0 and I = int(1/...

If `f(1/x)+x^2f(x)=0, x >0` and `I = int_(1//x)^x \ f(t) \ dt, \ 1/2 <= x <= 2 `, then `I` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is