Home
Class 12
PHYSICS
A particle of mass 15 kg has an initial ...

A particle of mass 15 kg has an initial velocity `vecv_(i) = hati - 2 hatjm//s` . It collides with another body and the impact time is 0.1s, resulting in a velocity `vecc_f = 6 hati + 4hatj + 5 hatk m//s` after impact. The average force of impact on the particle is :

A

`15[5hati + 6hatj+ 5hatk]`

B

`15[5hati + 6hatj - 5hatk]`

C

`150[5hati - 6hatj+ 5hatk]`

D

`150[5hati + 6hatj+ 5hatk]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average force of impact on the particle, we will follow these steps: ### Step 1: Calculate the initial momentum (P_i) The initial momentum \( P_i \) can be calculated using the formula: \[ P_i = m \cdot v_i \] where: - \( m = 15 \, \text{kg} \) - \( v_i = \hat{i} - 2 \hat{j} \, \text{m/s} \) Calculating \( P_i \): \[ P_i = 15 \, \text{kg} \cdot (\hat{i} - 2 \hat{j}) = 15 \hat{i} - 30 \hat{j} \, \text{kg m/s} \] ### Step 2: Calculate the final momentum (P_f) The final momentum \( P_f \) is given by: \[ P_f = m \cdot v_f \] where: - \( v_f = 6 \hat{i} + 4 \hat{j} + 5 \hat{k} \, \text{m/s} \) Calculating \( P_f \): \[ P_f = 15 \, \text{kg} \cdot (6 \hat{i} + 4 \hat{j} + 5 \hat{k}) = 90 \hat{i} + 60 \hat{j} + 75 \hat{k} \, \text{kg m/s} \] ### Step 3: Calculate the change in momentum (ΔP) The change in momentum \( \Delta P \) is given by: \[ \Delta P = P_f - P_i \] Calculating \( \Delta P \): \[ \Delta P = (90 \hat{i} + 60 \hat{j} + 75 \hat{k}) - (15 \hat{i} - 30 \hat{j}) = (90 - 15) \hat{i} + (60 + 30) \hat{j} + 75 \hat{k} \] \[ \Delta P = 75 \hat{i} + 90 \hat{j} + 75 \hat{k} \, \text{kg m/s} \] ### Step 4: Calculate the average force (F_avg) The average force \( F_{avg} \) is given by: \[ F_{avg} = \frac{\Delta P}{\Delta t} \] where: - \( \Delta t = 0.1 \, \text{s} \) Calculating \( F_{avg} \): \[ F_{avg} = \frac{75 \hat{i} + 90 \hat{j} + 75 \hat{k}}{0.1} = 750 \hat{i} + 900 \hat{j} + 750 \hat{k} \, \text{N} \] ### Final Answer The average force of impact on the particle is: \[ F_{avg} = 750 \hat{i} + 900 \hat{j} + 750 \hat{k} \, \text{N} \] ---

To find the average force of impact on the particle, we will follow these steps: ### Step 1: Calculate the initial momentum (P_i) The initial momentum \( P_i \) can be calculated using the formula: \[ P_i = m \cdot v_i \] where: ...
Promotional Banner