Home
Class 12
PHYSICS
A 64-kg woman stands on frictionless ice...

A 64-kg woman stands on frictionless ice. She kicks a 0.10-kg stone backwards with her feet so that the stone acquires a velocity of 1.1m/s. The velocity (in m/s) acquired by the woman is :

A

1.1m/s forward

B

0.0017m/s backward

C

0.0017m/s forward

D

1.1m/s backward

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the principle of conservation of momentum. The total momentum of the system before the kick must equal the total momentum after the kick. ### Step-by-Step Solution: 1. **Identify the Masses and Initial Velocities:** - Mass of the woman (Mw) = 64 kg - Mass of the stone (Ms) = 0.10 kg - Initial velocity of the woman (Uw) = 0 m/s (at rest) - Initial velocity of the stone (Us) = 0 m/s (at rest) 2. **Calculate Initial Momentum:** - The initial momentum (Pi) of the system is the sum of the momenta of the woman and the stone. \[ P_i = Mw \cdot Uw + Ms \cdot Us = 64 \cdot 0 + 0.10 \cdot 0 = 0 \, \text{kg m/s} \] 3. **Determine Final Velocities:** - After the woman kicks the stone, the stone acquires a velocity (Vs) of 1.1 m/s backwards. - Let the final velocity of the woman be (Vw). 4. **Calculate Final Momentum:** - The final momentum (Pf) of the system is given by: \[ P_f = Mw \cdot Vw + Ms \cdot Vs \] 5. **Apply Conservation of Momentum:** - According to the conservation of momentum: \[ P_i = P_f \] \[ 0 = Mw \cdot Vw + Ms \cdot Vs \] 6. **Substituting Known Values:** - Substitute the known values into the equation: \[ 0 = 64 \cdot Vw + 0.10 \cdot (-1.1) \] - Note that the stone's velocity is negative because it is moving backwards. 7. **Solve for Vw:** \[ 0 = 64 \cdot Vw - 0.11 \] \[ 64 \cdot Vw = 0.11 \] \[ Vw = \frac{0.11}{64} \] \[ Vw \approx 0.00171875 \, \text{m/s} \] 8. **Final Result:** - The velocity acquired by the woman is approximately: \[ Vw \approx 0.0017 \, \text{m/s} \, \text{(forward)} \]

To solve the problem, we will use the principle of conservation of momentum. The total momentum of the system before the kick must equal the total momentum after the kick. ### Step-by-Step Solution: 1. **Identify the Masses and Initial Velocities:** - Mass of the woman (Mw) = 64 kg - Mass of the stone (Ms) = 0.10 kg - Initial velocity of the woman (Uw) = 0 m/s (at rest) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

A car of mass 1200 kg starts from rest and acquires a uniform velocity of 18 m/s. What is the kinetic energy of the car ?

A person weighing 60kg In a small boat of mass 140 kg which is at rest, throws a 5 kg stone in the horizontal direction with a velocity of 14m//s^(-1) . The velocity of the boat immediately after the throw is (in m//s )

A gun fires a shell of mass 1.5kg with a velocity of 150m//s and recoils with a velocity of 2.5m//s . Calculate the mass of gun?

A 35-kg girl is standing near and to the left of a 43-kg boy on the frictionless surface of a frozen pond. The boy throws a 0.75-kg ice ball to the girl with a horizontal speed of 6.2 m/s. What are the velocities of the boy and the girl immediately after the girl catches the ice ball?

Two blocks of masses 5 kg and 2 kg are placed on a frictionless surface and connected by a spring. An external kick gives a velocity of 14 m//s to the heavier block in the direction of lighter one. The magnitudes of velocities of two blocks in the centre of mass frame after the kick are, respectively,

Stone of mass 1kg is whirled in a circular path of radius 1 m. Find out the tension in the string if the linear velocity is 10 m/s ?