Home
Class 12
PHYSICS
The plates of a parallel plate capacitor...

The plates of a parallel plate capacitor have an area of `90cm^(2)` and each are separated by 2mm. The capacitor is charged by connecting it to a 400 V supply. Then the energy density of the energy stored (in `Jm^(-3)`) in the capacitor is (take `epsi_(0)=8.8xx10^(-12)Fm^(-1)`)

A

`0.113`

B

`0.117`

C

`0.152`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the energy density of the energy stored in a parallel plate capacitor, we can follow these steps: ### Step 1: Convert the given area and separation to SI units - Area \( A = 90 \, \text{cm}^2 = 90 \times 10^{-4} \, \text{m}^2 = 9.0 \times 10^{-2} \, \text{m}^2 \) - Separation \( d = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \) ### Step 2: Calculate the electric field \( E \) The electric field \( E \) between the plates of a capacitor is given by the formula: \[ E = \frac{V}{d} \] Where: - \( V = 400 \, \text{V} \) (the voltage supply) - \( d = 2 \times 10^{-3} \, \text{m} \) Substituting the values: \[ E = \frac{400 \, \text{V}}{2 \times 10^{-3} \, \text{m}} = \frac{400}{0.002} = 200000 \, \text{V/m} = 2.0 \times 10^5 \, \text{V/m} \] ### Step 3: Calculate the energy density \( u \) The energy density \( u \) in a capacitor can be calculated using the formula: \[ u = \frac{1}{2} \epsilon_0 E^2 \] Where: - \( \epsilon_0 = 8.85 \times 10^{-12} \, \text{F/m} \) (the permittivity of free space) Substituting the values: \[ u = \frac{1}{2} \times 8.85 \times 10^{-12} \, \text{F/m} \times (2.0 \times 10^5 \, \text{V/m})^2 \] Calculating \( (2.0 \times 10^5)^2 \): \[ (2.0 \times 10^5)^2 = 4.0 \times 10^{10} \, \text{(V/m)}^2 \] Now substituting back into the energy density formula: \[ u = \frac{1}{2} \times 8.85 \times 10^{-12} \times 4.0 \times 10^{10} \] \[ u = 0.5 \times 8.85 \times 4.0 \times 10^{-2} \] \[ u = 0.5 \times 35.4 \times 10^{-2} = 17.7 \times 10^{-2} = 0.177 \, \text{J/m}^3 \] ### Final Answer The energy density of the energy stored in the capacitor is: \[ \boxed{0.177 \, \text{J/m}^3} \]

To find the energy density of the energy stored in a parallel plate capacitor, we can follow these steps: ### Step 1: Convert the given area and separation to SI units - Area \( A = 90 \, \text{cm}^2 = 90 \times 10^{-4} \, \text{m}^2 = 9.0 \times 10^{-2} \, \text{m}^2 \) - Separation \( d = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \) ### Step 2: Calculate the electric field \( E \) The electric field \( E \) between the plates of a capacitor is given by the formula: ...
Promotional Banner