Home
Class 12
MATHS
int(0)^(0)(dy)/(dx)y=tan^(-1)((3x-x^(3))...

int_(0)^(0)(dy)/(dx)y=tan^(-1)((3x-x^(3))/(1-3x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

y= tan^(-1)((3x-x^(3))/(1-3x^(2))) Find dy/dx

Evaluate the following integral: int_(0)^(1/sqrt(3))tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

int_(0)^(1)tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

y = tan^(-1)((3x-x^(3))/(1-3x^(2))), find dy/dx.

int_(0)^(1)(dx)/(3x+2)

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

Evaluate the following integral: int_0^(1//sqrt(3))tan^(-1)((3x-x^3)/(1-3x^2))dx

If y=tan^-1((3x-x^3)/(1-x^2)) , find dy/dx .

Find (dy)/(dx) in the following: y= tan^(-1) ((3x-x^(3))/(1-3x^(2))), |x| < (1)/(sqrt3)