Home
Class 12
MATHS
The coefficient of x20 in the expansion ...

The coefficient of x20 in the expansion of `(1+x^(2))^(40)*(x^(2)+2+1/x^(2))^(-5)` is :

A

`""^(30)C_(10)`

B

`""^(30)C_(25)`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^{20} \) in the expansion of \( (1 + x^2)^{40} \cdot (x^2 + 2 + \frac{1}{x^2})^{-5} \), we will follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ (1 + x^2)^{40} \cdot (x^2 + 2 + \frac{1}{x^2})^{-5} \] The second part can be rewritten as: \[ (x^2 + 2 + \frac{1}{x^2}) = \left( x + \frac{1}{x} \right)^2 + 2 \] Thus, we can express: \[ (x^2 + 2 + \frac{1}{x^2})^{-5} = \left( \left( x + \frac{1}{x} \right)^2 + 2 \right)^{-5} \] ### Step 2: Expand \( (1 + x^2)^{40} \) Using the Binomial Theorem, we can expand \( (1 + x^2)^{40} \): \[ (1 + x^2)^{40} = \sum_{k=0}^{40} \binom{40}{k} x^{2k} \] ### Step 3: Expand \( (x^2 + 2 + \frac{1}{x^2})^{-5} \) We can rewrite \( (x^2 + 2 + \frac{1}{x^2})^{-5} \) as: \[ \left( \frac{1}{x^2} (1 + 2x^{-2} + 1) \right)^{-5} = x^{10} (1 + 2x^{-2} + 1)^{-5} \] Now, we can expand \( (1 + 2 + 1/x^2)^{-5} \) using the generalized binomial expansion: \[ (1 + 2 + 1/x^2)^{-5} = \sum_{m=0}^{\infty} \binom{-5}{m} (2 + 1/x^2)^m \] ### Step 4: Find the coefficient of \( x^{20} \) Now, we need to find the coefficient of \( x^{20} \) from the product of the two expansions: 1. From \( (1 + x^2)^{40} \), we have terms of the form \( x^{2k} \). 2. From \( (x^2 + 2 + \frac{1}{x^2})^{-5} \), we have terms of the form \( x^{10} \cdot \text{(other terms)} \). We need to find combinations of \( k \) and \( m \) such that: \[ 2k + 10 + \text{(power from the second expansion)} = 20 \] ### Step 5: Calculate the coefficients The coefficient of \( x^{20} \) can be calculated as follows: - From \( (1 + x^2)^{40} \), we need \( 2k + 10 = 20 \) which gives \( k = 5 \). - The coefficient from \( (1 + x^2)^{40} \) for \( k = 5 \) is \( \binom{40}{5} \). - The remaining part must yield \( x^0 \) from the second expansion. Thus, the coefficient of \( x^{20} \) is: \[ \text{Coefficient} = \binom{40}{5} \] ### Final Step: Conclusion The coefficient of \( x^{20} \) in the expansion of \( (1 + x^2)^{40} \cdot (x^2 + 2 + \frac{1}{x^2})^{-5} \) is: \[ \binom{40}{5} \]
Promotional Banner