Home
Class 12
MATHS
Let n in N. If (1+x)^(n)=a(0)+a(1)x+a(2)...

Let `n in N`. If `(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n)` and `a_(n)-3,a_(n-2), a_(n-1)` are in AP, then :

A

`a_(1),a_(2),a_(3)` are in AP

B

`a_(1),a_(2),a_(3)` are in HP

C

`n=17`

D

`n=14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information and apply the properties of the coefficients of the binomial expansion. ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The binomial theorem states that: \[ (1 + x)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \] where \( a_k = \binom{n}{k} \). 2. **Identifying the Coefficients**: From the binomial expansion, we have: \[ a_{n-3} = \binom{n}{n-3}, \quad a_{n-2} = \binom{n}{n-2}, \quad a_{n-1} = \binom{n}{n-1} \] 3. **Condition for Arithmetic Progression (AP)**: The coefficients \( a_{n-3}, a_{n-2}, a_{n-1} \) are in AP if: \[ 2a_{n-2} = a_{n-3} + a_{n-1} \] 4. **Substituting the Coefficients**: Substitute the binomial coefficients into the AP condition: \[ 2 \binom{n}{n-2} = \binom{n}{n-3} + \binom{n}{n-1} \] This simplifies to: \[ 2 \binom{n}{2} = \binom{n}{3} + \binom{n}{1} \] 5. **Using the Binomial Coefficient Formulas**: Recall that: \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \] Therefore: \[ \binom{n}{2} = \frac{n(n-1)}{2}, \quad \binom{n}{3} = \frac{n(n-1)(n-2)}{6}, \quad \binom{n}{1} = n \] 6. **Setting Up the Equation**: Substitute these into the equation: \[ 2 \cdot \frac{n(n-1)}{2} = \frac{n(n-1)(n-2)}{6} + n \] This simplifies to: \[ n(n-1) = \frac{n(n-1)(n-2)}{6} + n \] 7. **Clearing the Fraction**: Multiply through by 6 to eliminate the fraction: \[ 6n(n-1) = n(n-1)(n-2) + 6n \] 8. **Rearranging the Equation**: Rearranging gives: \[ 6n^2 - 6n = n^3 - 3n^2 + 2n \] Simplifying further: \[ n^3 - 9n^2 + 8n = 0 \] 9. **Factoring the Polynomial**: Factor out \( n \): \[ n(n^2 - 9n + 8) = 0 \] The quadratic can be factored as: \[ n(n-1)(n-8) = 0 \] 10. **Finding the Natural Number Solutions**: The solutions are \( n = 0, n = 1, n = 8 \). Since \( n \in \mathbb{N} \), we take \( n = 8 \). ### Conclusion: The value of \( n \) such that \( a_{n-3}, a_{n-2}, a_{n-1} \) are in AP is \( n = 8 \).
Promotional Banner