Home
Class 12
MATHS
""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r...

`""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2)` equals :

A

`""^(n+1)C_(r)`

B

`""^(n)C_(r)`

C

`""^(n)C_(r+1)`

D

`""^(n-1)C_(r)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{n-2}{r} + 2 \cdot \binom{n-2}{r-1} + \binom{n-2}{r-2} \), we can use the properties of binomial coefficients. ### Step-by-Step Solution: 1. **Identify the Terms**: We have three terms in the expression: - \( \binom{n-2}{r} \) - \( 2 \cdot \binom{n-2}{r-1} \) - \( \binom{n-2}{r-2} \) 2. **Use the Binomial Coefficient Identity**: Recall the identity: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] We can manipulate our expression to fit this identity. 3. **Rewrite the Expression**: We can rewrite the expression as: \[ \binom{n-2}{r} + \binom{n-2}{r-1} + \binom{n-2}{r-1} + \binom{n-2}{r-2} \] This allows us to group terms. 4. **Group the Terms**: Now, group the terms: \[ \left( \binom{n-2}{r} + \binom{n-2}{r-1} \right) + \left( \binom{n-2}{r-1} + \binom{n-2}{r-2} \right) \] 5. **Apply the Identity**: Using the identity: - For the first group: \[ \binom{n-2}{r} + \binom{n-2}{r-1} = \binom{n-1}{r} \] - For the second group: \[ \binom{n-2}{r-1} + \binom{n-2}{r-2} = \binom{n-1}{r-1} \] 6. **Combine the Results**: Now we can combine the results: \[ \binom{n-1}{r} + \binom{n-1}{r-1} \] 7. **Final Application of the Identity**: Finally, apply the identity again: \[ \binom{n-1}{r} + \binom{n-1}{r-1} = \binom{n}{r} \] ### Conclusion: Thus, the original expression simplifies to: \[ \binom{n}{r} \]
Promotional Banner