Home
Class 12
MATHS
If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C...

If `""^(18)C_(15)+2(""^(18)C_(16))+""^(17)C_(16)+1=""^(n)C_(3)`, then n is equal to :

A

19

B

20

C

18

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \binom{18}{15} + 2\binom{18}{16} + \binom{17}{16} + 1 = \binom{n}{3} \), we will simplify the left-hand side step by step. ### Step 1: Rewrite the binomial coefficients We can rewrite the binomial coefficients using the property \( \binom{n}{r} = \binom{n}{n-r} \): \[ \binom{18}{15} = \binom{18}{3}, \quad \binom{18}{16} = \binom{18}{2}, \quad \text{and} \quad \binom{17}{16} = \binom{17}{1} \] Thus, we can rewrite the equation as: \[ \binom{18}{3} + 2\binom{18}{2} + \binom{17}{1} + 1 \] ### Step 2: Substitute the values Now, we substitute the values: \[ \binom{17}{1} = 17 \] So our equation becomes: \[ \binom{18}{3} + 2\binom{18}{2} + 17 + 1 \] This simplifies to: \[ \binom{18}{3} + 2\binom{18}{2} + 18 \] ### Step 3: Use the identity for binomial coefficients We can use the identity: \[ \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \] to combine the terms. First, we rewrite \( 2\binom{18}{2} \) as: \[ \binom{18}{2} + \binom{18}{2} \] Now we can combine: \[ \binom{18}{3} + \binom{18}{2} + \binom{18}{2} + 18 = \binom{18}{3} + \binom{18}{2} + \binom{18}{2} + \binom{17}{1} \] Using the identity: \[ \binom{18}{3} + 2\binom{18}{2} + 17 + 1 = \binom{19}{3} \] ### Step 4: Set the equation Now we have: \[ \binom{19}{3} = \binom{n}{3} \] ### Step 5: Solve for \( n \) From the equality of binomial coefficients, we can conclude: \[ n = 19 \] Thus, the value of \( n \) is \( 20 \). ### Final Answer: The value of \( n \) is \( 20 \). ---
Promotional Banner