Home
Class 12
MATHS
The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C...

The sum `""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10)` is equal to :

A

`2^(20)+(20!)/(10!)^(2)`

B

`2^(19)-1/2*(20!)/(10!)^(2)`

C

`2^(19)+""^(20)C_(10)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \( S = \binom{20}{0} + \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{10} \), we can use properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Sum**: The sum we want to evaluate is: \[ S = \binom{20}{0} + \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{10} \] 2. **Using the Binomial Theorem**: According to the binomial theorem, the sum of all binomial coefficients for a given \( n \) is: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] For \( n = 20 \): \[ \sum_{k=0}^{20} \binom{20}{k} = 2^{20} \] 3. **Symmetry of Binomial Coefficients**: The binomial coefficients have a symmetry property: \[ \binom{n}{k} = \binom{n}{n-k} \] This means: \[ \binom{20}{0} = \binom{20}{20}, \quad \binom{20}{1} = \binom{20}{19}, \quad \ldots, \quad \binom{20}{10} = \binom{20}{10} \] 4. **Splitting the Sum**: The total sum can be split into two equal halves: \[ \sum_{k=0}^{20} \binom{20}{k} = \sum_{k=0}^{10} \binom{20}{k} + \sum_{k=11}^{20} \binom{20}{k} \] Since \( \sum_{k=11}^{20} \binom{20}{k} = \sum_{k=0}^{9} \binom{20}{k} \) due to symmetry, we have: \[ \sum_{k=0}^{20} \binom{20}{k} = 2 \sum_{k=0}^{10} \binom{20}{k} \] Thus: \[ 2S = 2^{20} \] 5. **Finding S**: Dividing both sides by 2 gives: \[ S = \frac{2^{20}}{2} = 2^{19} \] 6. **Final Result**: Therefore, the sum \( S \) is: \[ S = 2^{19} \]
Promotional Banner