Home
Class 12
MATHS
The coefficient of x^(n) in the polynomi...

The coefficient of `x^(n)` in the polynomial `(x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n))` is

A

`2^(2n)`

B

`2^(2n+1)-1`

C

`2^(n+1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^(n) in the polynomial (x+^(n)C_(0))(x+3^(n)C_(1))xx(x+5^(n)C_(2))...[x+(2n+1)^(n)C_(n)]

Find the coefficient of x in polynomial (x+2n+1C_(0))(x+^(2n+1)C_(1))......(x+^(2n+1)C_(n))

The coefficient of x^(4) in the expansion of (1+x+x^(2)+x^(3))^(n) is *^(n)C_(4)+^(n)C_(2)+^(n)C_(1)xx^(n)C_(2)

The coefficient of x^(r)[0<=r<=(n-1)] in lthe expansion of (x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^(2)+...+(x+2)^(n) is ^(n)C_(r)(3^(r)-2^(n)) b.^(n)C_(r)(3^(n-r)-2^(n-r)) c.^(n)C_(r)(3^(r)+2^(n-r)) d.none of these

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)