Home
Class 12
MATHS
If (1+2x+3x^(2))^(10)=a(0)+a(1)x+a(2)x^(...

If `(1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……+a_(20)x^(20)`, then `a_(1)` equals :

A

10

B

20

C

210

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient \( a_1 \) in the expansion of \( (1 + 2x + 3x^2)^{10} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Function**: We start with the function \( f(x) = (1 + 2x + 3x^2)^{10} \). 2. **Differentiate the Function**: To find the coefficient of \( x \) (which is \( a_1 \)), we differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx}[(1 + 2x + 3x^2)^{10}] \] 3. **Apply the Chain Rule**: Using the chain rule, we have: \[ f'(x) = 10(1 + 2x + 3x^2)^9 \cdot (2 + 6x) \] 4. **Evaluate at \( x = 0 \)**: To find \( a_1 \), we substitute \( x = 0 \) into \( f'(x) \): \[ f'(0) = 10(1 + 2(0) + 3(0)^2)^9 \cdot (2 + 6(0)) \] Simplifying this gives: \[ f'(0) = 10(1)^9 \cdot (2) = 10 \cdot 2 = 20 \] 5. **Conclusion**: Thus, the coefficient \( a_1 \) is: \[ a_1 = 20 \] ### Final Answer: \[ \boxed{20} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(20)x^(20), then a_(1) equals 10 b.20 c.210 d.none of these

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (2+x+x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(20)x^(20) then (a_(1)-a_(0))/(a_(20))=

If n ge 2 , and (1 + x + x^(2))^(n) = a_(0) + a_(1)x + a_(2)x^(2) + .. . +a_(2n) x^(2n) , then a_(0) - 2a_(1)+ 3a_(2) + ... + (2n + 1)a_(n) = ______

(1+x+x^(2)+x^(3))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(15)x^(15), then a_(10) equals to

(1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(18)x^(18)