Home
Class 12
MATHS
The value of ((""^(50)C(0))/(1)+(""^(50)...

The value of `((""^(50)C_(0))/(1)+(""^(50)C_(2))/(3)+(""^(50)C_(4))/(5)+….+(""^(50)C_(50))/(51))` is :

A

`2^(50)/51`

B

`(2^(50)-1)/(51)`

C

`(2^(50)-1)/(50)`

D

`(2^(51)-1)/(51)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{{\binom{50}{0}}}{1} + \frac{{\binom{50}{2}}}{3} + \frac{{\binom{50}{4}}}{5} + \ldots + \frac{{\binom{50}{50}}}{51}, \] we can follow these steps: ### Step 1: Understand the Binomial Expansion The binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k. \] For \( n = 50 \), we have: \[ (1 + x)^{50} = \sum_{k=0}^{50} \binom{50}{k} x^k. \] ### Step 2: Consider the Expression We can express the given series in terms of binomial expansions. Notice that the terms with even indices are present in the expansion of \( (1 + x)^{50} \) and \( (1 - x)^{50} \). ### Step 3: Add the Two Expansions Consider the two expansions: 1. \( (1 + x)^{50} = \sum_{k=0}^{50} \binom{50}{k} x^k \) 2. \( (1 - x)^{50} = \sum_{k=0}^{50} \binom{50}{k} (-x)^k \) Adding these two expansions cancels out the odd indexed terms: \[ (1 + x)^{50} + (1 - x)^{50} = 2 \left( \binom{50}{0} + \binom{50}{2} x^2 + \binom{50}{4} x^4 + \ldots \right). \] ### Step 4: Integrate Both Sides Integrate both sides with respect to \( x \): \[ \int \left( (1 + x)^{50} + (1 - x)^{50} \right) dx = \int 2 \left( \binom{50}{0} + \binom{50}{2} x^2 + \binom{50}{4} x^4 + \ldots \right) dx. \] The left-hand side becomes: \[ \frac{(1 + x)^{51}}{51} - \frac{(1 - x)^{51}}{51} + C. \] ### Step 5: Evaluate at \( x = 1 \) Now, evaluate both sides at \( x = 1 \): \[ \frac{(1 + 1)^{51}}{51} - \frac{(1 - 1)^{51}}{51} = \frac{2^{51}}{51} - 0 = \frac{2^{51}}{51}. \] ### Step 6: Relate to the Series The right-hand side evaluates to: \[ 2 \left( \binom{50}{0} \cdot 1 + \frac{\binom{50}{2}}{3} \cdot 1^3 + \frac{\binom{50}{4}}{5} \cdot 1^5 + \ldots + \frac{\binom{50}{50}}{51} \cdot 1^{51} \right). \] ### Step 7: Solve for the Series Thus, we have: \[ \frac{2^{51}}{51} = 2 \left( \frac{\binom{50}{0}}{1} + \frac{\binom{50}{2}}{3} + \frac{\binom{50}{4}}{5} + \ldots + \frac{\binom{50}{50}}{51} \right). \] Dividing both sides by 2 gives: \[ \frac{2^{51}}{102} = \frac{\binom{50}{0}}{1} + \frac{\binom{50}{2}}{3} + \frac{\binom{50}{4}}{5} + \ldots + \frac{\binom{50}{50}}{51}. \] ### Final Result Thus, the value of the expression is: \[ \frac{2^{51}}{102}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) , is

(.^(50)C_(1))^(2)+2(.^(50)C_(2))^(2)+3(.^(50)C_(3))^(2)+.....+50(.^(50)C_(50))^(2)=

the value of (50C_(0))/(3)-(50C_(1))/(4)+(50C_(2))/(5)+.........+(50C_(50))/(53) is equal to

If ""^(50)C_(r) = ""^(50)C_(r+2) ,find r.

(i) ""^(50)C_(47)= ………. (ii) ""^(15)C_(14)= ………….