Home
Class 12
MATHS
The digit at the unit place in the numbe...

The digit at the unit place in the number `19^(2005)+11^(2005)-9^(2005)` is :

A

2

B

1

C

0

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the digit at the unit place in the expression \( 19^{2005} + 11^{2005} - 9^{2005} \), we can follow these steps: ### Step 1: Find the unit digit of \( 19^{2005} \) The unit digit of \( 19^{2005} \) is the same as the unit digit of \( 9^{2005} \) because the unit digit of a number only depends on the unit digit of the base. The unit digits of powers of 9 follow a pattern: - \( 9^1 = 9 \) (unit digit is 9) - \( 9^2 = 81 \) (unit digit is 1) - \( 9^3 = 729 \) (unit digit is 9) - \( 9^4 = 6561 \) (unit digit is 1) The pattern repeats every 2 terms: \( 9, 1, 9, 1, \ldots \) Since \( 2005 \) is odd, the unit digit of \( 9^{2005} \) is \( 9 \). ### Step 2: Find the unit digit of \( 11^{2005} \) The unit digit of \( 11^{2005} \) is the same as the unit digit of \( 1^{2005} \) because the unit digit of a number only depends on the unit digit of the base. The unit digit of any power of 1 is always \( 1 \). ### Step 3: Combine the results Now we can substitute back into our original expression: - The unit digit of \( 19^{2005} \) is \( 9 \). - The unit digit of \( 11^{2005} \) is \( 1 \). - The unit digit of \( 9^{2005} \) is \( 9 \). Now we compute: \[ \text{Unit digit of } (19^{2005} + 11^{2005} - 9^{2005}) = (9 + 1 - 9) \] ### Step 4: Calculate the final unit digit Calculating the above expression: \[ 9 + 1 - 9 = 1 \] ### Conclusion The digit at the unit place in the number \( 19^{2005} + 11^{2005} - 9^{2005} \) is \( 1 \). ### Final Answer The answer is \( 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(2005)^(2)-(1995)^(2)= ?

If alpha is a root of x^(2)-x+1=0 and beta be the digit at unit place in the number 2^(2^(n))-5,n in N(n gt 1) , then alpha^(2005)+alpha^(-2005)+beta^(2006)+beta^(-2006) is equal to ____________

Z-((1)/(Z))=i then z^(2005)+((1)/(z^(2005))) is?

Using intermediate value theorem,prove that there exists a number x such that x^(2005)+(1)/(1+sin^(2)x)=2005

If z-(1)/(z)=i then z^(2005)+(1)/(z^(2005))=+-sqrt(k) then k is

Find the squares of the following numbers: (I)35 (ii) 105 (iii) 2005

If matrix A is given by A=[[6,112,4]], then the determinant of A^(2005)-6A^(204) is 2^(2006)b(-11)2^(2005)c.-2^(2005)d.(-9)2^(2004)