Home
Class 12
MATHS
(1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^...

`(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)` then `C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n)` is equal to :

A

`((2n)!)/(n!)^(2)`

B

`((2n)!)/((n-1)!(n+1)!)`

C

`((2n)!)/((n-2)!(n+2)!)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( C_0 C_2 + C_1 C_3 + C_2 C_4 + \ldots + C_{n-2} C_n \) where \( C_k \) represents the binomial coefficients from the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The binomial expansion of \( (1+x)^n \) is given by: \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). 2. **Rewriting the Expression**: We need to evaluate: \[ S = C_0 C_2 + C_1 C_3 + C_2 C_4 + \ldots + C_{n-2} C_n \] 3. **Using the Identity of Binomial Coefficients**: We can use the identity \( C_k = \binom{n}{k} \) to rewrite \( S \): \[ S = \sum_{k=0}^{n-2} C_k C_{k+2} = \sum_{k=0}^{n-2} \binom{n}{k} \binom{n}{k+2} \] 4. **Applying Vandermonde's Identity**: We can express the sum using Vandermonde's identity: \[ \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r} \] In our case, we can adjust the indices to fit this identity. 5. **Finding the Coefficient**: To find \( S \), we consider the expansion of \( (1+x)^n \) and \( (1+x)^n \) again, and we multiply them: \[ (1+x)^n \cdot (1+x)^n = (1+x)^{2n} \] The coefficient of \( x^{n-2} \) in \( (1+x)^{2n} \) gives us \( C_{n-2}^{2n} \). 6. **Calculating the Coefficient**: The coefficient of \( x^{n-2} \) in \( (1+x)^{2n} \) is: \[ C_{n-2} = \binom{2n}{n-2} = \frac{(2n)!}{(n-2)!(n+2)!} \] 7. **Final Result**: Thus, we conclude that: \[ C_0 C_2 + C_1 C_3 + C_2 C_4 + \ldots + C_{n-2} C_n = \binom{2n}{n-2} \]
Promotional Banner