Home
Class 12
MATHS
""^(15)C(0)*""^(5)C(5)+""^(15)C(1)*""^(5...

`""^(15)C_(0)*""^(5)C_(5)+""^(15)C_(1)*""^(5)C_(4)+""^(15)C_(2)*""^(5)C_(3)+""^(15)C_(3)*""^(5)C_(2)+""^(15)C_(4)*""^(5)C_(1)` is equal to :

A

`2^(20)-2^(5)`

B

`(20!)/(5!15!)`

C

`(20!)/(5!15!)-1`

D

`(20!)/(5!15!)-(15!)/(5!10!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression: \[ ^{15}C_{0} \cdot ^{5}C_{5} + ^{15}C_{1} \cdot ^{5}C_{4} + ^{15}C_{2} \cdot ^{5}C_{3} + ^{15}C_{3} \cdot ^{5}C_{2} + ^{15}C_{4} \cdot ^{5}C_{1} \] we can use the Binomial Theorem. The Binomial Theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} {n \choose k} x^k \] ### Step 1: Write the Binomial expansions We can express the two binomials as: \[ (1 + x)^{15} = \sum_{k=0}^{15} {15 \choose k} x^k \] \[ (1 + x)^{5} = \sum_{j=0}^{5} {5 \choose j} x^j \] ### Step 2: Multiply the two expansions When we multiply these two expansions, we get: \[ (1 + x)^{15} \cdot (1 + x)^{5} = (1 + x)^{20} \] ### Step 3: Identify the coefficients We want to find the coefficient of \(x^5\) in the expansion of \((1 + x)^{20}\). This coefficient is given by: \[ {20 \choose 5} \] ### Step 4: Calculate the coefficient of \(x^5\) Using the binomial coefficient formula: \[ {n \choose k} = \frac{n!}{k!(n-k)!} \] we can calculate: \[ {20 \choose 5} = \frac{20!}{5! \cdot 15!} \] ### Step 5: Subtract the unwanted term However, our original expression also includes the term \(^{15}C_{5} \cdot ^{5}C_{0}\), which corresponds to \(x^5\) in the expansion. We need to subtract this term from our previous result: \[ {15 \choose 5} \cdot {5 \choose 0} = {15 \choose 5} \cdot 1 = {15 \choose 5} \] ### Step 6: Final calculation Thus, the final result is: \[ {20 \choose 5} - {15 \choose 5} \] Calculating these values: \[ {20 \choose 5} = \frac{20!}{5! \cdot 15!} \] \[ {15 \choose 5} = \frac{15!}{5! \cdot 10!} \] ### Step 7: Simplify the expression Now, we can simplify: \[ {20 \choose 5} - {15 \choose 5} = \frac{20!}{5! \cdot 15!} - \frac{15!}{5! \cdot 10!} \] ### Step 8: Final result The final answer is: \[ {20 \choose 5} - {15 \choose 5} \]
Promotional Banner