Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+…..+C(n)x^(n), t...

If `(1+x)^(n)=C_(0)+C_(1)x+…..+C_(n)x^(n)`, then `(C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))` is :

A

`(2^(n))/(n!)`

B

`(n+1)^(n)/(n!)`

C

`(n(n-1))/(2)`

D

`(n(n+1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \ldots + \frac{nC_n}{C_{n-1}} \] where \( C_k = \binom{n}{k} \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step 1: Rewrite the Expression We can rewrite the expression in summation notation: \[ S = \sum_{r=1}^{n} \frac{r C_r}{C_{r-1}} \] ### Step 2: Substitute Binomial Coefficients Using the property of binomial coefficients, we know: \[ C_r = \binom{n}{r} \quad \text{and} \quad C_{r-1} = \binom{n}{r-1} \] Thus, we can express \( \frac{C_r}{C_{r-1}} \): \[ \frac{C_r}{C_{r-1}} = \frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n!/(r!(n-r)!)}{(n!/(r-1)!(n-r+1)!)} = \frac{(n-r+1)}{r} \] ### Step 3: Substitute Back into the Summation Now substituting this back into our summation: \[ S = \sum_{r=1}^{n} r \cdot \frac{n-r+1}{r} = \sum_{r=1}^{n} (n - r + 1) \] ### Step 4: Simplify the Summation Now we can simplify the summation: \[ S = \sum_{r=1}^{n} (n - r + 1) = \sum_{r=1}^{n} (n + 1 - r) \] This can be rewritten as: \[ S = (n + 1) \sum_{r=1}^{n} 1 - \sum_{r=1}^{n} r \] The first summation \( \sum_{r=1}^{n} 1 = n \) and the second summation \( \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \). ### Step 5: Combine the Results Putting it all together: \[ S = (n + 1)n - \frac{n(n + 1)}{2} \] This simplifies to: \[ S = n(n + 1) - \frac{n(n + 1)}{2} = \frac{2n(n + 1) - n(n + 1)}{2} = \frac{n(n + 1)}{2} \] ### Final Result Thus, the final result is: \[ S = \frac{n(n + 1)}{2} \] ### Conclusion The expression evaluates to: \[ \frac{n(n + 1)}{2} \]
Promotional Banner