Home
Class 12
MATHS
sum(r=0)^(n)(""^(n)C(r))/(r+2) is equal ...

`sum_(r=0)^(n)(""^(n)C_(r))/(r+2)` is equal to :

A

`(n*2^(n+1))/((n+1)(n+2))`

B

`(n*2^(n+2))/((n+1)(n+2))`

C

`(n*2^(n))/((n+1)(n+2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=0}^{n} \frac{{n \choose r}}{r+2} \), we will follow a systematic approach using the properties of binomial coefficients and integration. ### Step-by-Step Solution 1. **Understanding the Binomial Coefficient**: We know that the binomial theorem states: \[ (1 + x)^n = \sum_{r=0}^{n} {n \choose r} x^r \] This means that the sum of the binomial coefficients multiplied by \( x^r \) gives us \( (1+x)^n \). **Hint**: Recall the binomial theorem and how it relates to binomial coefficients. 2. **Integrate the Binomial Expansion**: To introduce the \( r+2 \) in the denominator, we can integrate the binomial expansion. We integrate both sides with respect to \( x \): \[ \int (1+x)^n \, dx = \frac{(1+x)^{n+1}}{n+1} + C \] Evaluating from 0 to \( x \): \[ \int_0^x (1+t)^n \, dt = \frac{(1+x)^{n+1}}{n+1} - \frac{1}{n+1} \] **Hint**: Remember that integrating a function can help introduce terms in the denominator. 3. **Relate the Integral to the Summation**: The integral can also be expressed as: \[ \int_0^x (1+t)^n \, dt = \sum_{r=0}^{n} {n \choose r} \frac{x^{r+1}}{r+1} \] Setting \( x = 1 \): \[ \sum_{r=0}^{n} {n \choose r} \frac{1}{r+1} = \frac{(1+1)^{n+1}}{n+1} - \frac{1}{n+1} = \frac{2^{n+1} - 1}{n+1} \] **Hint**: Use the property of summation and integration to relate the two. 4. **Integrate Again**: Now, we need to integrate again to bring in the \( r+2 \) term: \[ \int_0^x (1+t)^{n+1} \, dt = \frac{(1+x)^{n+2}}{n+2} - \frac{1}{n+2} \] This can be expressed as: \[ \sum_{r=0}^{n} {n \choose r} \frac{x^{r+2}}{(r+1)(r+2)} \] **Hint**: Integrating again helps to introduce higher powers in the denominator. 5. **Evaluate at \( x = 1 \)**: Setting \( x = 1 \) gives: \[ \sum_{r=0}^{n} {n \choose r} \frac{1}{(r+1)(r+2)} = \frac{(1+1)^{n+2}}{n+2} - \frac{1}{n+2} = \frac{2^{n+2} - 1}{n+2} \] **Hint**: Evaluating at \( x = 1 \) simplifies the expression significantly. 6. **Final Expression**: Therefore, we find that: \[ \sum_{r=0}^{n} \frac{{n \choose r}}{r+2} = \frac{2^{n+2} - 1}{(n+1)(n+2)} \] **Hint**: Ensure to simplify the final expression and check for any common factors. ### Conclusion The final result for the summation \( \sum_{r=0}^{n} \frac{{n \choose r}}{r+2} \) is: \[ \frac{2^{n+2} - 1}{(n+1)(n+2)} \]
Promotional Banner