Home
Class 12
MATHS
sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is ...

`sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r)` is equal to :

A

`(2^(n)(n+2)-1)/((n+1))`

B

`(2^(n)(n+1)-1)/((n+1))`

C

`(2^(n)(n+4)-1)/((n+1))`

D

`(2^(n)(n+3)-1)/((n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the summation: \[ \sum_{r=0}^{n} \frac{r+2}{r+1} \binom{n}{r} \] We can break down the fraction \(\frac{r+2}{r+1}\) into two parts: \[ \frac{r+2}{r+1} = 1 + \frac{1}{r+1} \] Thus, we can rewrite the summation as: \[ \sum_{r=0}^{n} \left(1 + \frac{1}{r+1}\right) \binom{n}{r} \] This can be split into two separate summations: \[ \sum_{r=0}^{n} \binom{n}{r} + \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} \] ### Step 1: Evaluate the first summation The first summation is: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] This is a well-known result from the binomial theorem. ### Step 2: Evaluate the second summation The second summation is: \[ \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} \] We can relate this summation to the binomial coefficients by using the identity: \[ \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} = \frac{1}{n+1} \sum_{r=0}^{n} \binom{n+1}{r+1} = \frac{1}{n+1} \cdot 2^{n+1} \] This follows from the combinatorial interpretation of binomial coefficients. ### Step 3: Combine the results Now, we can combine both results: \[ \sum_{r=0}^{n} \frac{r+2}{r+1} \binom{n}{r} = 2^n + \frac{2^{n+1}}{n+1} \] ### Final Result Thus, the final result of the summation is: \[ \sum_{r=0}^{n} \frac{r+2}{r+1} \binom{n}{r} = 2^n + \frac{2^{n+1}}{n+1} \]
Promotional Banner