Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then `sum_(r=0)^(n)sum_(s=0)^(n)(r+s)C_(r)C_(s)` is equal to :

A

`2^(2n)`

B

`n*2^(2n)`

C

`n*2^(n)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s) C_r C_s \] where \( C_r \) is the binomial coefficient \( C(n, r) \). ### Step 1: Rewrite the Double Summation We can separate the double summation into two parts: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s) C_r C_s = \sum_{r=0}^{n} \sum_{s=0}^{n} r C_r C_s + \sum_{r=0}^{n} \sum_{s=0}^{n} s C_r C_s \] ### Step 2: Evaluate Each Part Now, we can evaluate each part separately. 1. **First Part:** \[ \sum_{r=0}^{n} \sum_{s=0}^{n} r C_r C_s = \sum_{r=0}^{n} r C_r \sum_{s=0}^{n} C_s \] The inner sum \( \sum_{s=0}^{n} C_s = 2^n \) (the sum of the binomial coefficients). Thus, we have: \[ \sum_{r=0}^{n} r C_r \cdot 2^n \] 2. **Second Part:** Similarly, \[ \sum_{r=0}^{n} \sum_{s=0}^{n} s C_r C_s = \sum_{s=0}^{n} s C_s \sum_{r=0}^{n} C_r = 2^n \sum_{s=0}^{n} s C_s \] ### Step 3: Evaluate \( \sum_{r=0}^{n} r C_r \) We know that: \[ \sum_{r=0}^{n} r C_r = n \cdot 2^{n-1} \] This is derived from the identity that states \( r C_r = n C_{r-1} \). ### Step 4: Combine the Results Now, substituting back into our expression, we have: 1. From the first part: \[ n \cdot 2^{n-1} \cdot 2^n = n \cdot 2^{2n-1} \] 2. From the second part: \[ 2^n \cdot n \cdot 2^{n-1} = n \cdot 2^{2n-1} \] ### Step 5: Final Result Adding both parts together: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s) C_r C_s = n \cdot 2^{2n-1} + n \cdot 2^{2n-1} = 2n \cdot 2^{2n-1} = n \cdot 2^{2n} \] Thus, the final answer is: \[ \boxed{n \cdot 2^{2n}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…..+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r*s)C_(r)C_(s) is :

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n) then the value of sumsum_(0lerltslen)C_(r)C_(s) is equal to :

The value of sum_(r=0)^(n)sum_(s=1)^(n)*^(n)C_(5)*^(s)C_(r) is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)+C_(r)C_(s)) is :