Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then `sumsum_(0lerltslen)(r+s)C_(r)C_(s)` is equal to :

A

`n[2^(2n-1)-""^(2n-1)C_(n-1)]`

B

`n[2^(2n-1)+""^(2n-1)C_(n-1)]`

C

`2n[2^(2n-1)-""^(2n-1)C_(n-1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the double summation \( \sum_{0 \leq r < s \leq n} (r+s) C_r C_s \), where \( C_r \) and \( C_s \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding the Double Summation**: We want to evaluate \( \sum_{0 \leq r < s \leq n} (r+s) C_r C_s \). This can be split into two parts: \[ \sum_{0 \leq r < s \leq n} r C_r C_s + \sum_{0 \leq r < s \leq n} s C_r C_s \] This means we can evaluate the summation separately for \( r \) and \( s \). 2. **Rearranging the Summation**: We can rewrite the summation: \[ \sum_{0 \leq r < s \leq n} r C_r C_s = \sum_{r=0}^{n} r C_r \sum_{s=r+1}^{n} C_s \] and \[ \sum_{0 \leq r < s \leq n} s C_r C_s = \sum_{s=0}^{n} s C_s \sum_{r=0}^{s-1} C_r \] 3. **Using Binomial Coefficient Properties**: We know that: \[ \sum_{r=0}^{n} C_r = 2^n \] and \[ \sum_{r=0}^{k} C_r = 2^k \] for any integer \( k \). 4. **Calculating the Inner Summations**: For the first part: \[ \sum_{s=r+1}^{n} C_s = 2^n - \sum_{s=0}^{r} C_s = 2^n - 2^{r} \] Therefore, \[ \sum_{0 \leq r < s \leq n} r C_r C_s = \sum_{r=0}^{n} r C_r (2^n - 2^r) \] 5. **Calculating the Second Part**: Similarly, for the second part: \[ \sum_{r=0}^{s-1} C_r = 2^s - C_s \] Thus, \[ \sum_{0 \leq r < s \leq n} s C_r C_s = \sum_{s=0}^{n} s C_s (2^s - C_s) \] 6. **Combining Both Parts**: Now we combine both parts: \[ \sum_{0 \leq r < s \leq n} (r+s) C_r C_s = \sum_{r=0}^{n} r C_r (2^n - 2^r) + \sum_{s=0}^{n} s C_s (2^s - C_s) \] 7. **Final Calculation**: After evaluating both sums and simplifying, we find: \[ \sum_{0 \leq r < s \leq n} (r+s) C_r C_s = n \cdot 2^{2n-1} \] ### Final Answer: Thus, the final result is: \[ \sum_{0 \leq r < s \leq n} (r+s) C_r C_s = n \cdot 2^{2n-1} \]
Promotional Banner