Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then the value of `sumsum_(0lerltslen)(r+s)(C_(r)+C_(s))` is :

A

`n^(2)*2^(n)`

B

`n*2^(n)`

C

`n^(2)*2^(2n)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation \( \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s)(C_r + C_s) \), where \( C_r \) and \( C_s \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial theorem states that: \[ (1+x)^n = \sum_{r=0}^{n} C_r x^r \] where \( C_r = \binom{n}{r} \). 2. **Setting Up the Summation**: We need to evaluate: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s)(C_r + C_s) \] 3. **Distributing the Summation**: We can distribute the summation: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s)(C_r + C_s) = \sum_{r=0}^{n} \sum_{s=0}^{n} (rC_r + rC_s + sC_r + sC_s) \] This can be broken down into four separate sums: \[ = \sum_{r=0}^{n} rC_r \sum_{s=0}^{n} 1 + \sum_{s=0}^{n} sC_s \sum_{r=0}^{n} 1 + \sum_{r=0}^{n} C_r \sum_{s=0}^{n} 1 + \sum_{s=0}^{n} C_s \sum_{r=0}^{n} 1 \] 4. **Calculating Each Component**: - The sum \( \sum_{s=0}^{n} 1 = n + 1 \). - The sum \( \sum_{r=0}^{n} rC_r = n \cdot 2^{n-1} \) (using the identity \( \sum_{r=0}^{n} rC_r = n \cdot 2^{n-1} \)). - Similarly, \( \sum_{s=0}^{n} sC_s = n \cdot 2^{n-1} \). 5. **Combining the Results**: Substituting these results back into our equation: \[ = n \cdot 2^{n-1} (n + 1) + n \cdot 2^{n-1} (n + 1) + (n + 1) \cdot 2^n + (n + 1) \cdot 2^n \] Simplifying: \[ = 2n \cdot 2^{n-1} (n + 1) + 2(n + 1) \cdot 2^n \] \[ = n(n + 1) \cdot 2^n + 2(n + 1) \cdot 2^n \] \[ = (n^2 + 3n + 2) \cdot 2^n \] 6. **Final Expression**: The final result simplifies to: \[ = n(n + 1) \cdot 2^n \] ### Conclusion: Thus, the value of the double summation \( \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s)(C_r + C_s) \) is: \[ n(n + 1) \cdot 2^n \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)+C_(r)C_(s)) is :

(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n) then the value of sumsum_(0lerltslen)C_(r)C_(s) is equal to :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(r+s)C_(r)C_(s) is equal to :

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen) C_(i)C_(j)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following sumsum_(0 le i lt j le n)C_(i)