Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then the value of `sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)+C_(r)C_(s))` is :

A

`n^(2)*2^(n)-n/2[2^(2n)-""^(2n)C_(n)]`

B

`n^(2)*2^(n)+n/2[2^(2n)-""^(2n-1)C_(n)]`

C

`n^(2)*2^(n)+n/2[2^(2n)+""^(2n)C_(n)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{0 \leq r < s \leq n} (r+s)(C_r + C_s + C_r C_s) \] where \( C_r \) and \( C_s \) are the binomial coefficients defined as \( C_r = \binom{n}{r} \) and \( C_s = \binom{n}{s} \). ### Step 1: Break down the expression We can rewrite the expression inside the summation: \[ (r+s)(C_r + C_s + C_r C_s) = (r+s)C_r + (r+s)C_s + (r+s)C_r C_s \] Thus, we can separate the summation into three parts: \[ \sum_{0 \leq r < s \leq n} (r+s)C_r + \sum_{0 \leq r < s \leq n} (r+s)C_s + \sum_{0 \leq r < s \leq n} (r+s)C_r C_s \] ### Step 2: Evaluate the first two sums For the first two sums, notice that due to symmetry, we can combine them: \[ \sum_{0 \leq r < s \leq n} (r+s)C_r = \sum_{0 \leq r < s \leq n} rC_r + \sum_{0 \leq r < s \leq n} sC_s \] Since \( r \) and \( s \) are interchangeable in the summation, we can write: \[ \sum_{0 \leq r < s \leq n} (r+s)C_r = \sum_{0 \leq r < s \leq n} rC_r = \sum_{0 \leq s < r \leq n} sC_s \] Thus, we have: \[ 2\sum_{0 \leq r < s \leq n} rC_r \] ### Step 3: Evaluate the third sum For the third sum, we can rewrite it as: \[ \sum_{0 \leq r < s \leq n} (r+s)C_r C_s \] This can be expanded as: \[ \sum_{0 \leq r < s \leq n} rC_r C_s + \sum_{0 \leq r < s \leq n} sC_r C_s \] Again, due to symmetry, we can combine these: \[ 2\sum_{0 \leq r < s \leq n} rC_r C_s \] ### Step 4: Combine all parts Now we can combine all the parts: \[ \sum_{0 \leq r < s \leq n} (r+s)(C_r + C_s + C_r C_s) = 2\sum_{0 \leq r < s \leq n} rC_r + 2\sum_{0 \leq r < s \leq n} rC_r C_s \] ### Step 5: Use binomial theorem properties Using the properties of binomial coefficients, we know: \[ \sum_{r=0}^{n} rC_r = n \cdot 2^{n-1} \] And for the product of coefficients: \[ \sum_{r=0}^{n} C_r C_s = 2^n \] ### Final Calculation Thus, we can conclude that: \[ \sum_{0 \leq r < s \leq n} rC_r = \frac{n \cdot 2^{n-1}}{2} = n \cdot 2^{n-2} \] And the final value of the original expression is: \[ \text{Final Value} = 2 \cdot n \cdot 2^{n-2} + 2 \cdot n \cdot 2^{n-2} = 4n \cdot 2^{n-2} \] ### Conclusion Thus, the value of the expression is: \[ \boxed{4n \cdot 2^{n-2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…..+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r*s)C_(r)C_(s) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n) then the value of sumsum_(0lerltslen)C_(r)C_(s) is equal to :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(r+s)C_(r)C_(s) is equal to :

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen) C_(i)C_(j)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following sumsum_(0 le i lt j le n)C_(i)