Home
Class 12
MATHS
If n is a positive integer and C(k)=""^(...

If n is a positive integer and `C_(k)=""^(n)C_(k)`, then the value of `sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2)` is :

A

`(n+(n+2)(n+1)^(2))/(12)`

B

`(n+(n+1)(n+2)^(2))/(12)`

C

`(n+(n+2)(n+1))/(12)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{k=1}^{n} k^3 \left( \frac{C_k}{C_{k-1}} \right)^2 \] where \( C_k = \binom{n}{k} \). ### Step 1: Simplify the Binomial Coefficient Ratio First, we know that: \[ \frac{C_k}{C_{k-1}} = \frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n-k+1}{k} \] Thus, we can write: \[ \left( \frac{C_k}{C_{k-1}} \right)^2 = \left( \frac{n-k+1}{k} \right)^2 \] ### Step 2: Substitute into the Summation Substituting this into our original summation gives: \[ \sum_{k=1}^{n} k^3 \left( \frac{n-k+1}{k} \right)^2 = \sum_{k=1}^{n} k^3 \cdot \frac{(n-k+1)^2}{k^2} \] This simplifies to: \[ \sum_{k=1}^{n} k(n-k+1)^2 \] ### Step 3: Expand the Expression Now we expand \( (n-k+1)^2 \): \[ (n-k+1)^2 = n^2 - 2nk + k^2 + 2n - 2k + 1 \] So, we have: \[ \sum_{k=1}^{n} k(n^2 - 2nk + k^2 + 2n - 2k + 1) \] ### Step 4: Distribute the Summation Distributing the summation gives: \[ n^2 \sum_{k=1}^{n} k - 2n \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k^4 + 2n \sum_{k=1}^{n} k - 2 \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k \] ### Step 5: Use Summation Formulas We use the following formulas for summations: 1. \( \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \) 2. \( \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \) 3. \( \sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 \) ### Step 6: Substitute the Summation Values Substituting these values into the expression, we get: \[ n^2 \cdot \frac{n(n+1)}{2} - 2n \cdot \frac{n(n+1)(2n+1)}{6} + \left( \frac{n(n+1)}{2} \right)^2 + 2n \cdot \frac{n(n+1)}{2} - 2 \cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \] ### Step 7: Combine and Simplify After substituting and simplifying, we can combine like terms. The final expression will yield: \[ \frac{n(n+1)^2(n+2)}{12} \] ### Final Answer Thus, the value of the summation is: \[ \frac{n(n+1)^2(n+2)}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer and C_(k)=.^(n)C_(k) then find the value of sum_(k=1)^(n)k^(3)*((C_(k))/(C_(k-1)))^(2)

If n is a positive integer SC_(k)=^(n)C_(k), find the value of (sum_(k=1)^(n)(k^(3))/(n(n+1)^(2)*(n+2))((C_(k))/(C_(k)-1))^(2))^(-1)

If sum_(k=1)^(n)k=45, find the value of sum_(k=1)^(n)k^(3).

If C_(k), denotes 4C_(k), then the value 2sum_(k=1)^(4)((k.C_(k))/(C_(k)+C_(4-k)))^(2) is

If sum_(k=1)^(n)k=210, find the value of sum_(k=1)^(n)k^(2).

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))