Home
Class 12
MATHS
If C(0),C(1),C(2),…,C(n) are the binomia...

If `C_(0),C_(1),C_(2),…,C_(n)` are the binomial coefficients in the expansion of `(1+x)^(n)*n` being even, then `C_(0)+(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))+….+(C_(0)+C_(1)+C_(2)+…+C_(n-1))` is equal to :

A

`n*2^(n)`

B

`n*2^(n-1)`

C

`n*2^(n-2)`

D

`n*2^(n-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the expression given and use properties of binomial coefficients. ### Step 1: Understand the expression We need to find the value of: \[ C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \ldots + (C_0 + C_1 + C_2 + \ldots + C_{n-1}) \] This can be rewritten as: \[ C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \ldots + (C_0 + C_1 + C_2 + \ldots + C_{n-1}) \] ### Step 2: Break down the sums We can express this sum in terms of binomial coefficients: - The first term is \(C_0\). - The second term is \(C_0 + C_1\). - The third term is \(C_0 + C_1 + C_2\). - Continuing this way, the last term is \(C_0 + C_1 + C_2 + \ldots + C_{n-1}\). ### Step 3: Count the occurrences of each coefficient Each coefficient \(C_k\) appears in multiple sums: - \(C_0\) appears \(n\) times. - \(C_1\) appears \(n-1\) times. - \(C_2\) appears \(n-2\) times. - Continuing this way, \(C_{n-1}\) appears once. ### Step 4: Write the total sum We can express the total sum as: \[ nC_0 + (n-1)C_1 + (n-2)C_2 + \ldots + 1C_{n-1} \] ### Step 5: Use the binomial theorem From the binomial theorem, we know: \[ (1+x)^n = C_0 + C_1x + C_2x^2 + \ldots + C_nx^n \] Setting \(x = 1\): \[ 2^n = C_0 + C_1 + C_2 + \ldots + C_n \] Setting \(x = -1\): \[ 0 = C_0 - C_1 + C_2 - C_3 + \ldots + (-1)^n C_n \] ### Step 6: Calculate the sums The sum \(C_0 + C_1 + C_2 + \ldots + C_{n-1}\) can be calculated as: \[ C_0 + C_1 + C_2 + \ldots + C_{n-1} = 2^n - C_n \] And \(C_n\) can be expressed as \(C_n = \binom{n}{n} = 1\) when \(n\) is even. ### Step 7: Final expression Thus, the total sum becomes: \[ n \cdot 2^n - (n-1) \cdot 2^{n-1} \] This simplifies to: \[ n \cdot 2^{n-1} \] ### Conclusion The final answer is: \[ n \cdot 2^{n-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0),C_(1),C_(2),........C_(n), are the Binomial coefficients in the expansion of (1+x)^(n),n being even,then C_(0)+(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))+....+(C_(0)+C_(1)+C_(2)+......+C_(n) is equal to

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0),C_(1),C_(2),.........,C_(n) denote the binomial coefficients in the expansion of (1+1)^(n), then sum_(0<=r

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is

If C_(0), C_(1), C_(2), …, C_(n) are the coefficients in the expansion of (1+x)^(n) , then what is the value of C_(1) +C_(2) +C_(3) + …. + C_(n) ?