Home
Class 12
MATHS
If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+...

If `(1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n)` where `a_(0)`, `a(1)`, `a(2)` are unequal and in A.P., then `(1)/(a_(n))` is equal to :

A

`(1)/((2n-1))`

B

`(1)/((2n+1))`

C

`(2)/(2n-1)`

D

`(1)/(n+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \((1 + x + x^2)^n\) and find the coefficients \(a_0\), \(a_1\), and \(a_2\) such that they are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Rewrite the Expression**: \[ (1 + x + x^2)^n \] This can be expressed as: \[ (1 + x)(1 + x^2)^n \] 2. **Expand Using the Binomial Theorem**: We can expand \((1 + x + x^2)^n\) using the multinomial theorem, but for our purpose, we will focus on the coefficients: - \(a_0\) is the constant term. - \(a_1\) is the coefficient of \(x\). - \(a_2\) is the coefficient of \(x^2\). 3. **Identify the Coefficients**: - The coefficient \(a_0\) (the constant term) is simply \(1\) (when \(x = 0\)). - The coefficient \(a_1\) (the coefficient of \(x\)) can be found using: \[ a_1 = \binom{n}{1} = n \] - The coefficient \(a_2\) (the coefficient of \(x^2\)) can be calculated as: \[ a_2 = \binom{n}{2} + \binom{n}{1} = \frac{n(n-1)}{2} + n = \frac{n(n+1)}{2} \] 4. **Set Up the A.P. Condition**: Since \(a_0\), \(a_1\), and \(a_2\) are in A.P., we have: \[ 2a_1 = a_0 + a_2 \] Substituting the values: \[ 2n = 1 + \frac{n(n + 1)}{2} \] 5. **Solve the Equation**: Multiply through by \(2\) to eliminate the fraction: \[ 4n = 2 + n(n + 1) \] Rearranging gives: \[ n^2 - 3n + 2 = 0 \] Factoring: \[ (n - 1)(n - 2) = 0 \] Thus, \(n = 1\) or \(n = 2\). 6. **Determine Valid \(n\)**: Since \(a_0\), \(a_1\), and \(a_2\) are unequal, we discard \(n = 1\). Therefore, \(n = 2\). 7. **Find \(a_n\)**: Now we need to find \(a_2\): \[ a_2 = \frac{2(2 + 1)}{2} = 3 \] 8. **Calculate \(\frac{1}{a_n}\)**: Finally, we compute: \[ \frac{1}{a_2} = \frac{1}{3} \] ### Final Answer: \[ \frac{1}{a_n} = \frac{1}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If (1-x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(2)+a_(4)++a_(2n)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(2n)x^(2n), then a_(0)+a_(2)+a_(4)+....+a_(2n) is

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(3)+a_(6)++,n in N

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

If n ge 2 , and (1 + x + x^(2))^(n) = a_(0) + a_(1)x + a_(2)x^(2) + .. . +a_(2n) x^(2n) , then a_(0) - 2a_(1)+ 3a_(2) + ... + (2n + 1)a_(n) = ______