Home
Class 12
MATHS
(1+x)=C(0)+C(1)x+….+C(n)x^(n) then the v...

`(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n)` then the value of `sumsum_(0lerltslen)C_(r)C_(s)` is equal to :

A

`1/2[2^(2n)-""^(2n)C_(n)]`

B

`1/4[2^(2n)-""^(2n)C_(n)]`

C

`1/2[2^(2n)+""^(2n)C_(n)]`

D

`1/2[2^(n)-""^(2n)C_(n)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation \( \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s \), where \( C_r \) and \( C_s \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial expansion of \( (1+x)^n \) is given by: \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). 2. **Setting Up the Double Summation**: We need to evaluate: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s \] This can be rewritten using the property of summation: \[ \left( \sum_{r=0}^{n} C_r \right) \left( \sum_{s=0}^{n} C_s \right) \] This is because the double summation can be factored into the product of two single summations. 3. **Calculating the Single Summation**: From the binomial theorem, we know: \[ \sum_{r=0}^{n} C_r = (1+1)^n = 2^n \] Therefore, both summations yield \( 2^n \): \[ \sum_{r=0}^{n} C_r = 2^n \quad \text{and} \quad \sum_{s=0}^{n} C_s = 2^n \] 4. **Calculating the Product**: Now substituting back into our expression: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s = (2^n)(2^n) = 2^{2n} \] 5. **Final Result**: Thus, the value of the double summation \( \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s \) is: \[ 2^{2n} \]
Promotional Banner